李民康 1,2向显嵩 1,2周常河 1,2,*韦春龙 1[ ... ]朱世曜 1,2
作者单位
摘要
1 中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
2 中国科学院大学材料与光电研究中心, 北京 100049
3 暨南大学光子技术研究院, 广东 广州 511443
二维光栅是光刻机光栅尺系统的核心元件。搭建了超精密激光直写系统,基于二维超精密工件台,通过旋转基片90°进行两次曝光,制作出栅线密度为1200 line/mm的二维光栅掩模。原子力显微镜和扫描电镜结果表明,所制作的掩模轮廓清晰,空间分布均匀。实验结果证明了超精密激光直写系统能够制作出二维光栅掩模,在制作大尺寸、高精度二维计量光栅方面有着广阔的应用前景。
光栅 超精密系统 激光直写 栅距测量 
光学学报
2019, 39(9): 0905001
Author Affiliations
Abstract
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
We proposed a novel wavelength-spread compression technique for spectral beam combining of a diode laser array. A reflector, which is parallel to the grating, is introduced to achieve a double pass with a single grating. This facilitated the reduction of the wavelength spread by half and doubled the number of combined elements in the gain range of the diode laser. We achieved a power of 26.1 W under continuous wave operation using a 19 element single bar with a wavelength spread of 6.3 nm, which is nearly half of the original wavelength spread of 14.2 nm, demonstrating the double-compressed spectrum capability of this structure. The spectral beam combining efficiency was 63.7%. The grating efficiency and reflector reflectance were both over 95%; hence, the efficiency loss of the double-pass grating with a reflector is acceptable. In contrast to double-grating methods, the proposed method introduces a reflector that efficiently uses the single grating and shows significant potential for a more efficient spectral beam combining of diode laser arrays.
140.2010 Diode laser arrays 140.3290 Laser arrays 140.3298 Laser beam combining 
Chinese Optics Letters
2018, 16(7): 071402
Author Affiliations
Abstract
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
We propose a nonparallel double-grating structure in a spectral-beam combining technique, where two gratings are placed nonparallel satisfying the Littrow mount in the focal region of the convergent lens. The most attractive advantage of this approach is that it will compress the spectral span into half of its original spectrum, which means the number of combined elements can be doubled in the gain range of diode lasers. Experimental results demonstrate that the CW output power of the combined beam is 30.9 W with a spectral span of 7.0 nm, compared with its original spectrum span of 13.6 nm, and the spectral beam combining efficiency is 70.5%. In consideration that a single grating could have a high efficiency of >97% in a bandwidth of over ten nanometers, the efficiency loss of the grating pair should be less than 6%, which is acceptable for most applications, so this method of using double gratings should be highly interesting for practical applications when a nearly doubled number of diode lasers could be combined into one single laser compared with the previous single-grating methods.
140.2010 Diode laser arrays 140.3290 Laser arrays 140.3298 Laser beam combining 050.1950 Diffraction gratings 
Chinese Optics Letters
2017, 15(9): 091403

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!